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Abstract:  We review and extend the idea of Linear Quadratic Regulator (LQR) by suppressing the time dependence, 

assuming that our solution is smooth and the gradient is zero. We develop necessary and sufficient conditions for 

optimal state feedback solution using the Stochastic Optimality Principle. Furthermore, we obtain the Stochastic 

Hamilton-Jacobi-Bellman (SHJB) equation, using conditional expectations. Finally, we observed that if no 

perturbation is present, then the SHJB equation reduces to the deterministic Hamilton-Jacobi-Bellman (HJB) 

equation. 
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Introduction 

It is assumed within the Linear Quadratic Regulator 

environment, that the state of the system is available for 

feedback and that it is uncorrupted by any perturbation signal. 

Now consider the optimality of the control when the state is 

perturbed by a random process; with this, the system state 

becomes a Markov process and the principle of Optimality is 

employed to derive a stochastic version of the Hamilton – 

Jacobi – Bellman equation (HJB) equation (Golsten, 1950; 

Anderson and Moore, 1989; Fleming and Rishel, 1975; 

Bellman, 1957). The deterministic case of (SHJB) is a special 

case where dw, the Wienerincrement is replaced by its 

average value, zero. When a Stochastic problem is solved as a 

deterministic problem with stochastic variables replaced by 

their averages (Sontag, 1998), we noticed that the certainty – 

equivalence principle holds. Certainty equivalence is normally 

employed in engineering design, the above establishes validity 

of certainty equivalence (CE) for additive perturbation 

Stochastic LQR (APSLQR) problems for the deterministic 

and Stochastic LQR problem, (Perota et al., 1975 and for 

Stochastic HJB equation (Davis, 1977; Fleming and Rishel, 

1975). 

The rest of this paper will be organized as follows: the next 

section will dwell on the Linear Quadratic Regulator; 

followed by discussion on the Stochastic Bellman equation. 

Then, we discuss an optimization equation for SHJB control 

problems. Finally, the last section deals with the additive 

perturbation, leading to our conclusion. 

Linear quadratic regulator (LQR) 

The basic LQR problem seeks to state the feedback law of the 

form 

u kx      (1) 

which minimizes the performance criteria 

 
0

( , ) ( ) ( )T T TJ x u x t Rx t x Px u Qu dt


  
   

 (2) 

subject to the system dynamics given by   

( ) ( )x Ax t Du t     (3) 

where the matrices P and R are positive – semi- definite and 

Q is positive definite matrix. x is an n - dimensional input 

vector. The final time  is fixed and the final state ( )x  is 

free. Considering the LQR problem, the Lagrangian form of 

it, is  

( , , ) T TL x u x Px u Qu     (4) 

The system vector field F is,  

( , , )F x u Ax Du      (5) 

and the terminal condition 

 ( ( )) ( ) ( )TR x x Rx      (6) 

The matrices A, D, P, Q and R consist of the input data to the 

LQR problem and in general the time,  varies. 

Now suppose we suppress the time dependence as follows 

since this is time invariant problem, we know that   

  0
v


   (7) 

sothat the HJB equation takes the form 

0 min ( , , ) ( , , )T

u

v v
L x u F x u

x

 
 

 

 
   

 
 

min ( )

T

T T

u

v
x Px u Qu Ax Du

x





   
        

   (8) 

Since our solution is assumed smooth, the minimization will 

be attained by setting the gradient to zero. If Q is positive 

definite, the necessary condition for a minimal point is also a 

sufficient condition, as long as the gradient is zero and solving 

for u produces 

 

*

* 11

2

T w
u Q D

x





     (9) 

Bear in mind that the gradient of a quadratic form
T Tu Hu d u   (10) 

with respect to u is equal to 2Hu d  (11) 

Better still, we state that 2T Tu Hu d u Hu d   . 

This implies that equations (10) and (11) are equal. It is a fact 

that an integral quadratic form evaluated for a linear system is 

a quadratic form in the initial state of the system, hence it is 

reasonable to assume that  

 
*( , ) ( )TW t x x V t x    (12) 

where ( )V t is a symmetric matrix valued function of time  .  

The gradient of 
*W is then 2 ( )V t x . If W takes on this 

quadratic form and its gradient is substituted back into (8), the 

HJB equation, becomes (13) 
1T T T Tx Vx x A V VA P VDQ D V x          

 (13) 

with boundary conditions  

 
*( , ) ( )T TW x x V x x Rx     (14) 

Since we have used the matrix identity, 

  2 T T Tx VAx x A V VA x    (15) 

in deriving the first equation. 
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The true state of the two equations for all values of x , led to 

the following matrix Riccati equation and the final boundary 

value for ( )V t . 

1T TV A V VA P VWDQ D Q       (16) 

 ( )V R      (17) 

and the optimal state feedback control is given by  

 * ( )u k t x  ,    (18)     

where
1( ) ( )Tk t Q D V t  (19) 

We note thatV(t) is unknown. The product 2V(t)x(t) stands for 

J

x




 and subsequently, we  are able to express 

J

x




 

explicitly in terms of t and x, since V(t) becomes explicitly 

derivable from (16). This leads to the feedback law. 

The Stochastic Bellman equation 

The performance measure for the Stochastic Control problem 

is defined as  

( ( )) / ( ) ( ( ), ( ), )
t

J E R x x t x L x r u r r dr



 

   
 


    

(20) 

Assume that   is fixed and that L and R have the same 

properties, which also implies in the deterministic LQR

problem. With the condition on ( )x t , equation (20) becomes 

a function of the initial state x , in addition to the initial 

time.Now consider the following basic definitions. 

Definition 3.1Areal valued stochastic process W(t) is called a 

Wiener process or Brownian motion if 

(i) (0) 0W  , 

(ii) Each sample path is continuous, 

(iii) ( )W t is Gaussian with 
20, t    (that 

is, ( )W t is (0, ))N t , 

(iv) For all choices of times 

1 20 mt t t    the random variables 

1 2 1( ), ( ), , ( ) ( )m mW t W t W t W t  are 

independent random variables. 

Condition (iv) implies that W has “independent increments” 

and we heuristically interpret the one-dimensional “white 

noise” (.) as equalling
( )dW t

dt
. 

To understand stochastic differential equation (SDE) driven 

by “white noise” that will enable have full meaning of 

stochastic control problem and its optimality, consider first of 

all 

 

0

( ) ( ( )) ( ), ( 0)

(0)

X t f X t t t

X x

   



   (21a)  

where we informally think of .W   

Definition 3.2 A stochastic process (.)X solves (21a) if for 

all times 0,t  we have 

0

0

( ) ( ( )) ( ).
t

X t x f X s ds W t  
     

(21b) 

Remarks: (i) It is possible to solve (21b) by the method of 

successive approximation. With this, set 
0(.)X x , and 

inductively define 

 
1 0

0

( ) ( ( )) ( ).
t

k kX t x f X s ds W t     

It turns out that ( )kX t converges to a limit ( )X t for all 

0t   and (.)X solves the integral identity (21b). 

 (ii) Consider a more general SDE 

( ) ( ( )) ( ( )) ( ),( 0),X t f X s G X s s t          (21c) 

which is read formally as  

 
( ) ( )

( ( )) ( ( ))
dX t dW t

f X t G X t
dt dt

   

and then  ( , , ) ( , , ) ( )dX F X u t dt G X u t dW t  . 

 

The Optimal Stochastic Control Problem considered is to 

minimize equation (20) with respect to the control input, 

subject to the constraint that the state ( )x r satisfies the 

stochastic differential equation 

( , , ) ( , , )dX F X u t dt G X u t dW   (21) 

where ( )dW t is a Wiener increment as defined earlier, with 

co-variance matrix ( )W t dt . 

We state below a version of the stochastic principle of 

Optimality that will be used to develop the condition and 

optimal state feedback solution. 

Proposition: Stochastic optimality principle 

If *( )u r  is optimal over the interval ,t  , conditioned on 

the initial state ( )x t , then *( )u t is necessarily optimal over 

the subinterval ,t t   ,  

for any 0t t t       (22) 

Proof: 

With the Markov property of ( )x t  and the conditioning in 

the performance measure, it follows that the performance 

measure value over the subinterval  ,t t   is conditioned 

on ( )x t t completely independent of the value of the 

( )u t over the interval[ , ]t t t . This is really all that is 

needed to make the deterministic proof of the optimality 

principle become applicable to stochastic problems. 

Derivation of an optimization equation for the stochastic 

control problem 

Assume equation (12) represents the optimal value of the 

performance measure (20). Since *W depends on the initial 

state  

( )x t x     (23) 

because of the conditioning on the expected value. As in the 

deterministic case, assume [ , ]u t  , the control input is 

defined over the interval[ , ]t  . Next suppress the arguments 

of the functions; 

( , , ), ( ), ( , , )L x u t R x F x u t
 

and ( , , )G x u t in the 

expressions that follows and we have from the definition of 

the value function *( , )W t x that; 
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 
( , )

*( , ) min ( ) / ( )
t t

t t tu F t
W t x E Ldr Ldr R x t








         (24) 

Applying the nested expectations property, we have  

    *( , ) min ( ) / ( ) / ( )
t t

t t tu
W t x E Ldr E Ldr R x t t x t




        (25) 

A careful look at equations (24) and (25) indicates that we have written the conditioning directly in terms of these equations.  

Then by bringing into focus the stochastic optimality principle, equation (25) becomes 

 *( , ) min *( ( ), ) / ( )
t t

tu
W t x E Ldr W x t t t t x t



        (26) 

From equation (26), ( )x t t which seems as an argument of *W is a random vector, given by 

( ) ,x t t x x   from the stochastic differential equation. The stochastic increment x  may be approximated as  

 x f x G y             (27) 

and by applying a multivariable Taylor – Series expansion on W* around the point ( , )t x  and an approximation of the integral 

can be obtained for our final optimization equation, since the covariance of a Wiener process is linear in t .Hence we must 

utilize the Taylor series expansion up to the third term in x . The emerging expansion takes the form  

* * 1
*( , ) *( , ) ( ) ( )

2

T

TW W
W x x t t W t x t x x H x

t x

 

 

 
             

 (28) 

where the matrix H denotes the Hessian matrix whose i, j – th entries are 

 

2 *

i j

W
H

x x

 
  

  

         (29) 

As such, our approximation of the HJB equation becomes 

 
( )

( , , ) *( , )

*( , ) min * 1 1
( ) ( ) /

2 2

Tu t

L x u t t W t x

W t x E W
x x H x x

x





   
 

  
    

 

    (30) 

On applying the conditional certainty property of expectation to equation (30), we have,  

  
*

( , , ) / ( , , ) ( ) /

T
W

E L x u t t x L x u t tE F t G y x t
x





   
          

  

      = 
*

( , , )

T
W

F x u t t
x





 
  

       (31) 

 

 

Similarly, using the fact that for any vector Z and any 

symmetric matrix A, we have 

  T Tz Az tr A z     

     (32) 

Then;  

 ( ) ( ) / ( )( ) /T TE x H x x tr HE x x x             
(33) 

Next by using Y , we have a zero mean and a covariance 

matrix Y t , we have, 

E[(∆x)(∆x)T / x] = E[(F∆t + G∆y)(F∆t + G∆y) / x]    (34) 

 = 
2( )T TFF t GYG t     (35) 

It is obvious that the first term in equation (35) is of order two 

as such we can neglect it in the limit. Taking the limit as 

0t   and using all of the above computations for 

conditional expectation, we obtain the Stochastic Hamilton – 

Jacobi – Bellman equation; 

 

*
( , , ) ( , , )

*
min

1
( , , ) ( , , )

2

T

u
T

W
L x u t F x u t

W x

t
tr HG x u t YG x u t


 


  
        

 
  

      (36) 

with boundary condition 

 *( , ) ( ), .W x R x x    

We obtain the condition which results directly from our 

definition for Jand the property of the conditional expectation 

if no disturbance is present  0y  ; then the stochastic HJB 

equation reduces to the deterministic HJB equation. The 

deterministic HJB equation of the stochastic HJB equation is 

solved by first computing the feedback function  

 
*

* ( , , )
W

u k x t
x




    (37) 

which minimizes the term in parentheses in equation (36) and 

when this feedback controller is substituted back into the HJB 

equation, we eventually solve the emerging PDE for 

*( , )W t x . 

 

Additive Perturbations 

Consider the optimal control problem where the performance 

criteria is quadratic, the system is linear and the perturbations 

seem additive. Then  

  ( ) ( ) /T T T

t
J E x Rx x Px u Qu dt x



   
  

 (38) 

Where  dx Ax Du dt Gdw     (39) 
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Equation (38) can be written in terms of the functions, L, R, F 

and G, where each denotes 

 ( , , ) ,T TL x u t x Px u Qu    (40) 

( ) ,TR x x Rx     (41) 

( , , ) ,F x u t Ax Du     (42) 

( , ) ( ),G x t G t     (43) 

W is a Wiener process with a different covariance 

matrix Wdt . (44) 

 

Thus, the input for the optimal stochastic linear quadratic 

problem includes , , , , ,P Q R A D G andW . The 

minimization step required in the Stochastic HJB involves 

minimizing  

 
*

T

T W
u Qu Du

x





 
   

   (45) 

as long as these are the only terms containing u. These terms 

are the same terms used in the deterministic LQR problem, 

where the optimal value of u was found as that in equation (9).  

In the same vein, one may assume a solution for *W of the 

form in equation (12) 

 * ( )TW x V t x     (46) 

as in the deterministic case. This approach, however 

introduces a term independent of x on the right hand side of 

the stochastic HJB equation that would not be balanced on 

LHS, the best way for this value function is  

 * ( ) ( )TW x V t x C t     (47) 

Let *U  and *W be as defined above, on substituting back 

into the stochastic HJB equation and using the fact that  

 2
Tx Qx

Qx
x




     (48) 

and 

 2H Q     (49) 

After some matrix manipulations, we have; 

–xTQx – C = xT(ATV + VA + P – VDQ–1DTV)x + 

tr(VGYGT) (50) 

 

Equating the coefficients of like powers of x , we have the 

optimization equations as 

1T TV A V VA P VDQ D V      (51) 

( )TC tr PGYG     (52) 

With boundary conditions as 

( )V R      (53) 

( ) 0C        (54) 

and the optimal state feedback control given by 
1*( ) ( ) ( )TU t Q D V t x t    (55) 

where ( )V t is given as the solution of the differential Riccati 

equation. 

 

Conclusion 

By suppressing the time dependence in LQR , our solution 

becomes smooth, since the gradient is zero. Also we observed 

that if no perturbation, the stochastic Hamilton – Jacobi – 

Bellman equation reduces to the deterministic Hamilton – 

Jacobi – Bellman equation. In addition, by applying the 

conditional certainty property expectation, we were able to 

derive the stochastic Jacobi Bellman equation.  Furthermore, 

the system is uncorrupted by any signal perturbation on the 

condition that if we assumed that the LQR   system is 

known. Finally, the optimality of the control is perturbed 

when the state is perturbed by a random process and with this 

assumption the system state becomes a Markov process. 
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